Chapter 3 Summary Displaying and Describing Categorical Data

What did you learn?

We can summarize categorical data by counting the number of cases in each category, sometimes expressed as percents. Data can be displayed in a bar or circle graph. Categorical relationships can be viewed in a contingency table.

- We examine the marginal distribution of each variable
- We also look at conditional distribution of a variable within each category of the other variable
- We can display these conditional and marginal distributions in bar or circle graphs
- If the conditional distributions of one variable are about the same for every category of the other, the variables are independent

Three Rules of Data Analysis

- 1. Make a picture organizes patterns and helps clear thinking about relationships
- 2. Make a picture show important features of data and patterns in the data
- 3. Make a picture tell others about the data
- Florence Nightingale used data displays to show more soldiers in the Crimean War (1856) died of illness and infection than of battle wounds

Titanic data

Class	Passenger Count	Percent
First	325	14.77%
Second	285	12.95%
Third	706	32.08%
Crew	885	40.21%

Frequency table A frequency table lists the categories in a categorical variable a count of observations for each category.	
Proportion	A comparison of numbers. For our use, dividing the counts by the total number of cases.
Percentages	Multiplying proportions by 100 to express as percentages, or ratios compared to a total of 100.B41
Relative frequency table	A frequency table lists the categories in a categorical variable and gives the percentage of observations for each category.
Distribution	The distribution of a variable gives the possible values of the variable and the relative frequency of each value.

The Area Principle

Area principle	In a statistical display, each data value should be represented by the same amount of area
	same amount of area.

Bar chart	Bar charts show a bar representing the count of each category in a categorical variable.
Relative frequency bar chart	A bar chart that shows the proportion of people in each category rather than counts.

Pie chart	Pie charts show how a "whole" divides into	1
	categories by showing a wedge of a circle whose	-6
	area corresponds to the proportion in each	V
	category.	1

Categorical data condition	Before making a bar or pie chart, be sure that the categorical data is in counts or percentages of individuals.
Contingency table	A contingency table displays counts and, sometimes, percentages of individuals falling into named categories on two or more variables. The table categorizes the individuals on all variables at once, to reveal possible patterns in one variable that may be contingent on the category of the other.

Chapter 3 Summary Continued

Marginal distribution In a contingency table, the distribution of either variable alone is called the marginal distribution. The counts or percentages are the totals found in the margins (last row or column) of the table.

			Class					
		First	Second	Third	Crew	Total		
1	Count	203	118	178	212	711		
Aller	% of Row	28.6%	16.6%	25.0%	29.8%	100%		
Anve	% of Column	62.5%	41.4%	25.2%	24.0%	32.3%		
1	% of Table	9.2%	5.4%	8.1%	9.6%	32.3%		
	Count	122	167	528	673	1490		
Dead	% of Row	8.2%	11.2%	35.4%	45.2%	100%		
Deau	% of Column	37.5%	58.6%	74.8%	76.0%	67.7%		
	% of Table	5.6%	7.6%	24.0%	30.6%	67.7%		
	Count	325	285	706	885	2201		
Total	% of Row	14.8%	12.9%	32.1%	40.2%	100%		
TOLDI.	% of Column	100%	100%	100%	100%	100%		
	% of Table	14.8%	12.9%	32.1%	40.2%	100%		

Conditional	The distribution of a variable restricting the Who to consider only a smaller
distribution	group of individuals is called a conditional distribution.

Did the chance of surviving the *Titanic* depend on ticket class?

						Class						
						First	Second	Third	Crew	Total		
		at	Alive	Count % of Co	olumn	203 62.5%	118 41,4%	178 25,2%	212 24.0%	711 32.3%		
		Survivi	Dead	Count % of Co	olumn	122 37.5%	167 58.6%	528 74.8%	673 76.0%	1490 67.7%		
			Total	Count		325	285	706	885	2201		
				Class						Class		
	First	s	econd	Third	Crew	Total		Firs	t Secon	nd Third	Crew	Total
Alive	203		118	178	212	711	Dea	122	167	528	673	1490
	28.6%	1	6.6%	25.0%	29.8%	100%	Dea	8.29	6 11.29	6 35.4%	45.2%	100%

Independence	Variables are said to be independent if the conditional distribution of one variable is the same for each category of the other.
Segmented bar chart	A bar chart where each bar is treated as the "whole" and divides the bar proportionally into segments corresponding to the percentage in each group.

What can go wrong?

- Don't violate the area principle.
- Keep it honest.
- Don't confuse similar-sounding percentages.
- Don't forget to look at the variables separately, too.
- Be sure to use enough individuals.
- Don't overstate your case.
- Don't use unfair or silly averages.

Simpson's	When averages are taken across different groups, they can appear to
paradox	contradict the overall averages. This is known as "Simpson's paradox."

		Time of Day						
		Day	Night	Overall				
Pilot	Moe	90 out of 100 90%	10 out of 20 50%	100 out of 120 83%				
	Jill	19 out of 20 95%	75 out of 100 75%	94 out of 120 78%				

It's always better to compare percentages or other averages within each level of the other variable.