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Chapter 27 Summary 

Inferences for Regression 
 

What have we learned? 

 We have now applied inference to regression models. 

 Like in all inference situations, there are conditions that we must check. 

 We can test a hypothesis about the slope and find a confidence interval for the true slope. 

 And, again, we are reminded never to mistake the presence of an association for proof of 

causation. 

 

An Example: Body Fat and Waist Size 

 Our chapter example revolves around the 

relationship between % body fat and waist size (in 

inches). Here is a scatterplot of our data set: 

 

 

Remembering Regression 

 In regression, we want to model the relationship between two quantitative variables, one 

the predictor and the other the response.  

 To do that, we imagine an idealized regression line, which assumes that the means of the 

distributions of the response variable fall along the line even though individual values are 

scattered around it. 

 Now we’d like to know what the regression model can tell us beyond the individuals in 

the study. 

 We want to make confidence intervals and test hypotheses about the slope and intercept 

of the regression line. 

 

The Population and the Sample 

 When we found a confidence interval for a mean, we could imagine a single, true 

underlying value for the mean. 

 When we tested whether two means or two proportions were equal, we imagined a true 

underlying difference. 

 What does it mean to do inference for regression? 

 We know better than to think that even if we know every population value, the data 

would line up perfectly on a straight line. 

 In our sample, there’s a whole distribution of %body fat for men with 38-inch waists: 

   
 This is true at each waist size. 

 We could depict the distribution of %body fat at different waist sizes (see above) 
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The Population and the Sample (cont.) 

 The model assumes that the means of the distributions of %body fat for each waist size 

fall along the line even though the individuals are scattered around it. 

 The model is not a perfect description of how the variables are associated, but it may be 

useful. 

 If we had all the values in the population, we could find the slope and intercept of the 

idealized regression line explicitly by using least squares. 

 We write the idealized line with Greek letters and consider the coefficients to be 

parameters: 0 is the intercept and 1 is the slope. 

 Corresponding to our fitted line of                    , we write 

 Now, not all the individual y’s are at these means—some lie above the line and some 

below. Like all models, there are errors.   

 Denote the errors by  and write  = y – y for each data point (x, y). 

 When we add error to the model, we can talk about individual y’s instead of means: 

 

 This equation is now true for each data point (since the individual ’s soak up the 

deviations) and gives a value of y for each x. 

 

Assumptions and Conditions 

 In Chapter 8 when we fit lines to data, we needed to check only the Straight Enough 

Condition.  

 Now, when we want to make inferences about the coefficients of the line, we’ll have to 

make more assumptions (and thus check more conditions). 

 We need to be careful about the order in which we check conditions. If an initial 

assumption is not true, it makes no sense to check the later ones.  

1. Linearity Assumption: 

o Straight Enough Condition: Check the scatterplot—the shape must be linear or we 

can’t use regression at all. 

o If the scatterplot is straight enough, we can go on to some assumptions about the 

errors. If not, stop here, or consider re-expressing the data to make the scatterplot 

more nearly linear. 

2. Independence Assumption: 

o Randomization Condition: the individuals are a representative sample from the 

population. 

o Check the residual plot (part 1)—the residuals should appear to be randomly 

scattered. 

3. Equal Variance Assumption: 

o Does The Plot Thicken? Condition: Check the residual plot (part 2)—the spread 

of the residuals should be uniform. 

4. Normal Population Assumption: 

o Nearly Normal Condition: Check a histogram of the residuals. The distribution of 

the residuals should be unimodal and symmetric. 
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Assumptions and Conditions (cont.) 

 If all four assumptions are true, the idealized regression model would look like this: 

 
 At each value of x there is a distribution of y-values that follows a Normal model, and 

each of these Normal models is centered on the line and has the same standard deviation. 

 

Which Come First: the Conditions or the Residuals? 

 There’s a catch in regression—the best way to check many of the conditions is with the 

residuals, but we get the residuals only after we compute the regression model.  

 To compute the regression model, however, we should check the conditions. 

 So we work in this order: 

o Make a scatterplot of the data to check the Straight Enough Condition. (If the 

relationship isn’t straight, try re-expressing the data. Or stop.) 

o If the data are straight enough, fit a regression model and find the residuals, e, and 

predicted values,  .  

o Make a scatterplot of the residuals against x or the predicted values.  

 This plot should have no pattern. Check in particular for any bend, any 

thickening, or any outliers. 

o If the data are measured over time, plot the residuals against time to check for 

evidence of patterns that might suggest they are not independent. 

o If the scatterplots look OK, then make a histogram and Normal probability plot of 

the residuals to check the Nearly Normal Condition. 

o If all the conditions seem to be satisfied, go ahead with inference. 

 

Intuition About Regression Inference 

 We expect any sample to produce a b1 whose expected value is the true slope, 1.  

 What about its standard deviation?  

 What aspects of the data affect how much the slope and intercept vary from sample to 

sample? 

o Spread around the line:  

 Less scatter around the line means the slope will be more consistent from 

sample to sample.  

 The spread around the line is measured with the residual standard 

deviation se.  

 You can always find se in the regression output, often just labeled s. 

 Spread around the line:  
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Intuition About Regression Inference (cont.) 

 Spread of the x’s: A large standard deviation of x provides a more stable regression. 

 
 Sample size: Having a larger sample size, n, gives more consistent estimates. 

 

Standard Error for the Slope 

 Three aspects of the scatterplot affect the standard error of the regression slope:  

o spread around the line, se 

o spread of x values, sx 

o sample size, n. 

 The formula for the standard error (which you will probably never have to calculate by 

hand) is:  

 

 

Sampling Distribution for Regression Slopes 

 When the conditions are met, the standardized estimated regression slope 

  follows a Student’s t-model with n – 2 degrees of freedom. 

 We estimate the standard error with 

 

 

 

 where: 

o                        
 

o n is the number of data values 

o sx is the ordinary standard deviation of the x-values. 

 

What About the Intercept? 

 The same reasoning applies for the intercept.  

 We can write 

           but we rarely use this fact for anything.  

 The intercept usually isn’t interesting. Most hypothesis tests and confidence intervals for 

regression are about the slope. 

 

Regression Inference 

 A null hypothesis of a zero slope questions the entire claim of a linear relationship 

between the two variables—often just what we want to know. 
 

 To test H0: 1 = 0, we find                      and continue as we would with any other t-test. 

 

 The formula for a confidence interval for 1 is  
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Standard Errors for Predicted Values 

 Once we have a useful regression, how can we indulge our natural desire to predict, 

without being irresponsible? 

 Now we have standard errors—we can use those to construct a confidence interval for the 

predictions, smudging the results in the right way to report our uncertainty honestly. 

 For our %body fat and waist size example, there are two questions we could ask: 

o Do we want to know the mean %body fat for all men with a waist size of, say, 38 

inches? 

o Do we want to estimate the %body fat for a particular man with a 38-inch waist? 

 The predicted %body fat is the same in both questions, but we can predict the mean 

%body fat for all men whose waist size is 38 inches with a lot more precision than we can 

predict the %body fat of a particular individual whose waist size happens to be 38 inches. 

 We start with the same prediction in both cases. 

o We are predicting for a new individual, one that was not in the original data set. 

o Call his x-value xν. 

o The regression predicts %body fat as 

 Both intervals take the form  

 The SE’s will be different for the two questions we have posed. 

 The standard error of the mean predicted value is:  

 

 Individuals vary more than means, so the standard error for a single predicted value is 

larger than the standard error for the mean: 

 
Confidence Intervals for Predicted Values 

 Here’s a look at the difference between predicting 

for a mean and predicting for an individual. 

 The solid green lines near the regression line show 

the 95% confidence interval for the mean predicted 

value, and the dashed red lines show the prediction 

intervals for individuals. 

 

What Can Go Wrong? 

 Don’t fit a linear regression to data that aren’t straight. 

 Watch out for the plot thickening. 

o If the spread in y changes with x, our predictions will be very good for some x-

values and very bad for others. 

 Make sure the errors are Normal. 

o Check the histogram and Normal probability plot of the residuals to see if this 

assumption looks reasonable. 

 Watch out for extrapolation. 

o It’s always dangerous to predict for x-values that lie far from the center of data. 

 Watch out for high-influence points and outliers. 

 Watch out for one-tailed tests. 

o Tests of hypotheses about regression coefficients are usually two-tailed, so 

software packages report two-tailed P-values. 

o If you are using software to conduct a one-tailed test about slope, you’ll need to  

divide the reported P-value in half. 
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