Chapter 23 Summary Inferences about Means

What have we learned?

- Statistical inference for means relies on the same concepts as for proportions—only the mechanics and the model have changed.
- The reasoning of inference, the need to verify that the appropriate assumptions are met, and the proper interpretation of confidence intervals and P-values all remain the same regardless of whether we are investigating means or proportions.

Getting Started

- Now that we know how to create confidence intervals and test hypotheses about proportions, it'd be nice to be able to do the same for means.
- Just as we did before, we will base both our confidence interval and our hypothesis test on the sampling distribution model.
- The Central Limit Theorem told us that the sampling distribution model for means is

Normal with mean μ and standard deviation $SD(\overline{y}) = \frac{\sigma}{\sqrt{n}}$

- All we need is a random sample of quantitative data.
- And the true population standard deviation, σ .

• Well, that's a problem...

- Proportions have a link between the proportion value and the standard deviation of the sample proportion.
- This is not the case with means—knowing the sample mean tells us nothing about $SD(\bar{y})$
- We'll do the best we can: estimate the population parameter σ with the sample statistic s.
- Our resulting standard error is $SE(\overline{y}) = \frac{r_s}{\sqrt{n}}$
- We now have extra variation in our standard error from *s*, the sample standard deviation.
 - We need to allow for the extra variation so that it does not mess up the margin of error and P-value, especially for a small sample.
- And, the *shape* of the sampling model changes—the model is no longer Normal. So, what is the sampling model?

Gosset's t

- William S. Gosset, an employee of the Guinness Brewery in Dublin, Ireland, worked long and hard to find out what the sampling model was.
- The sampling model that Gosset found has been known as Student's *t*.
- The Student's *t*-models form a whole *family* of related distributions that depend on a parameter known as degrees of freedom.
- We often denote degrees of freedom as df, and the model as t_{df} .

What Does This Mean for Means?

- A practical sampling distribution model for means
 - When the conditions are met, the standardized sample mean t =

$$=\frac{y-\mu}{SE(\overline{y})}$$

follows a Student's *t*-model with n - 1 degrees of freedom.

• We estimate the standard error with $SE(\overline{y}) = \frac{s}{\sqrt{n}}$

What Does This Mean for Means? (cont.)

- When Gosset corrected the model for the extra uncertainty, the margin of error got bigger.
 - Your confidence intervals will be just a bit wider and your P-values just a bit larger than they were with the Normal model.
- By using the *t*-model, you've compensated for the extra variability in precisely the right way.
- Student's *t*-models are unimodal, symmetric, and bell shaped, just like the Normal.
- But *t*-models with only a few degrees of freedom have much fatter tails than the Normal.

- As the degrees of freedom increase, the *t*-models look more and more like the Normal.
- In fact, the *t*-model with infinite degrees of freedom is exactly Normal.

Finding *t*-Values By Hand

- The Student's *t*-model is different for each value of degrees of freedom.
- Because of this, Statistics books usually have one table of *t*-model critical values for selected confidence levels.
- Alternatively, we could use technology to find *t* critical values for any number of degrees of freedom and any confidence level you need.
- What technology could we use?
 - The Appendix of *ActivStats* on the CD
 - Any graphing calculator or statistics program

Assumptions and Conditions

- Gosset found the *t*-model by simulation.
- Years later, when Sir Ronald A. Fisher showed mathematically that Gosset was right, he needed to make some assumptions to make the proof work.
- We will use these assumptions when working with Student's *t*.
- Independence Assumption:
 - Randomization Condition: The data arise from a random sample or suitably randomized experiment. Randomly sampled data (particularly from an SRS) are ideal.
 - 10% Condition: When a sample is drawn without replacement, the sample should be no more than 10% of the population.

Two tail probability		0.20	0.10	0.05	
One tail probability		0.10	0.05	0.025	
Table T	df				
Values of t_{α}	1	3.078	6.314	12.706	
	2	1.886	2.920	4.303	
	3	1.638	2.353	3.182	
~	4	1.533	2.132	2.776	
	5	1.476	2.015	2.571	
	6	1.440	1.943	2.447	
	7	1.415	1.895	2.365	
-f _{o2} 0 f _{o2}	8	1.397	1.860	2.306	
Twotails	9	1.383	1.833	2.262	
-	10	1.372	1.812	2.228	
\frown	11	1.363	1.796	2.201	
	12	1.356	1.782	2.179	
	13	1.350	1.771	2.160	
0 t _a	14	1.345	1.761	2.145	
Onetail	15	1.341	1.753	2.131	
	16	1.337	1.746	2.120	
	17	1.333	1.740	2.110	
	18	1.330	1.734	2.101	
	19	1.328	1.729	2.093	
Part of Table T					

Assumptions and Conditions (cont.)

- Normal Population Assumption:
 - We can never be certain that the data are from a population that follows a Normal model, but we can check the
 - Nearly Normal Condition: The data come from a distribution that is unimodal and symmetric.
 - Check this condition by making a histogram or Normal probability plot.
- Nearly Normal Condition:
 - The smaller the sample size (n < 15 or so), the more closely the data should follow a Normal model.
 - \circ For moderate sample sizes (*n* between 15 and 40 or so), the *t* works well as long as the data are unimodal and reasonably symmetric.
 - For larger sample sizes, the *t* methods are safe to use even if the data are skewed.

One-Sample *t*-Interval

- When the conditions are met, we are ready to find the confidence interval for the population mean, μ .
- The confidence interval is $\overline{y} \pm t_{n-1}^* \times SE(\overline{y})$ where the standard error of the mean is $SE(\overline{y}) = \frac{s}{\sqrt{n}}$
- The critical value t_{n-1}^* depends on the particular confidence level, *C*, that you specify and on the number of degrees of freedom, n 1, which we get from the sample size.

More Cautions About Interpreting Confidence Intervals

- Remember that interpretation of your confidence interval is key.
- What NOT to say:
 - "90% of all the vehicles on Triphammer Road drive at a speed between 29.5 and 32.5 mph."
 - The confidence interval is about the *mean* not the individual values.
 - "We are 90% confident that *a randomly selected vehicle* will have a speed between 29.5 and 32.5 mph."
 - Again, the confidence interval is about the *mean* not the individual values.
- What NOT to say:
 - "The mean speed of the vehicles is 31.0 mph 90% of the time."
 - The true mean does not vary—it's the confidence interval that would be different had we gotten a different sample.
 - o "90% of all samples will have mean speeds between 29.5 and 32.5 mph."
 - The interval we calculate does not set a standard for every other interval it is no more (or less) likely to be correct than any other interval.

Make a Picture, Make a Picture, Make a Picture

- Pictures tell us far more about our data set than a list of the data ever could.
- The only reasonable way to check the Nearly Normal Condition is with graphs of the data.
 - Make a histogram of the data and verify that its distribution is unimodal and symmetric with no outliers.
 - You may also want to make a Normal probability plot to see that it's reasonably straight.

One-Sample *t*-test for the Mean

- The conditions for the one-sample *t*-test for the mean are the same as for the one-sample *t*-interval.
- We test the hypothesis H₀: $\mu = \mu_0$ using the statistic $t_{n-1} = \frac{y \mu_0}{SE(\overline{y})}$
- The standard error of the sample mean is $SE(\overline{y}) = \frac{s}{\sqrt{n}}$
- When the conditions are met and the null hypothesis is true, this statistic follows a Student's *t* model with n 1 df. We use that model to obtain a P-value.

Significance and Importance

- Remember that "statistically significant" does not mean "actually important" or "meaningful."
 - Because of this, it's always a good idea when we test a hypothesis to check the confidence interval and think about likely values for the mean.

Intervals and Tests

- Confidence intervals and hypothesis tests are built from the same calculations.
 - In fact, they are complementary ways of looking at the same question.
 - $\circ~$ The confidence interval contains all the null hypothesis values we can't reject with these data.
- More precisely, a level C confidence interval contains *all* of the possible null hypothesis values that would not be rejected by a two-sided hypothesis text at alpha level 1 C.
 - \circ So a 95% confidence interval matches a 0.05 level test for these data.
- Confidence intervals are naturally two-sided, so they match exactly with two-sided hypothesis tests.
 - When the hypothesis is one sided, the corresponding alpha level is (1 C)/2.

Sample Size

- To find the sample size needed for a particular confidence level with a particular margin of error (*ME*), solve this equation for *n*: $ME = t_{n-1}^* \frac{s}{\sqrt{n}}$
- The problem with using the equation above is that we don't know most of the values. We can overcome this:
 - We can use *s* from a small pilot study.
 - We can use z^* in place of the necessary *t* value.
- Sample size calculations are *never* exact.
 - The margin of error you find *after* collecting the data won't match exactly the one you used to find n.
- The sample size formula depends on quantities you won't have until you collect the data, but using it is an important first step.
- Before you collect data, it's always a good idea to know whether the sample size is large enough to give you a good chance of being able to tell you what you want to know.

*The Sign Test—Back to Yes and No

- We could turn our quantitative data into a set of yes/no values (Bernoulli trials).
- We can test a median by counting the number of values above and below that value—this is called a sign test.
 - The sign test is a *distribution-free* method, since there are no *distributional* assumptions or conditions on the data.
 - Because we no longer have quantitative data, we don't require the Nearly Normal Condition.

What Can Go Wrong?

- Ways to Not Be Normal:
 - Beware multimodality.
 - The Nearly Normal Condition clearly fails if a histogram of the data has two or more modes.
 - Beware skewed data.
 - If the data are very skewed, try re-expressing the variable.

• Set outliers aside—but remember to report on these outliers individually.

- ...And of Course:
- Watch out for bias—we can never overcome the problems of a biased sample.
- Make sure data are independent.
 - Check for random sampling and the 10% Condition.
- Make sure that data are from an appropriately randomized sample.
- Interpret your confidence interval correctly.
 - Many statements that sound tempting are, in fact, misinterpretations of a confidence interval for a mean.
 - A confidence interval is about the mean of the population, not about the means of samples, individuals in samples, or individuals in the population.