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Chapter 18 Summary 

Sampling Distribution Models 
 

What have we learned? 

 Sample proportions and means will vary from sample to sample—that’s sampling error 
(sampling variability). 

 Sampling variability may be unavoidable, but it is also predictable! 

 We’ve learned to describe the behavior of sample proportions when our sample is 
random and large enough to expect at least 10 successes and failures. 

 We’ve also learned to describe the behavior of sample means (thanks to the CLT!) when 
our sample is random (and larger if our data come from a population that’s not roughly 

unimodal and symmetric). 

 

Modeling the Distribution of Sample Proportions 

 Rather than showing real repeated samples, imagine what would happen if we were to 

actually draw many samples. 

 Now imagine what would happen if we looked at the sample proportions for these 
samples. What would the histogram of all the sample proportions look like? 

 We would expect the histogram of the sample proportions to center at the true proportion, 
p, in the population. 

 As far as the shape of the histogram goes, we can simulate a bunch of random samples 
that we didn’t really draw. 

 It turns out that the histogram is unimodal, symmetric, and centered at p.  

 More specifically, it’s an amazing and fortunate fact that a Normal model is just the right 
one for the histogram of sample proportions. 

 To use a Normal model, we need to specify its mean and standard deviation. The mean of 
this particular Normal is at p. 

 When working with proportions, knowing the mean automatically gives us the standard 

deviation as well—the standard deviation we will use is 
pq

n
. 

 So, the distribution of the sample proportions is modeled with a probability model that is 
 

 

 A picture of what we just discussed is as follows: 

 
 

How Good Is the Normal Model? 

 The Normal model gets better as a good model for the distribution of sample proportions 
as the sample size gets bigger. 

 Just how big of a sample do we need? This will soon be revealed… 
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Assumptions and Conditions 

 Most models are useful only when specific assumptions are true. 

 There are two assumptions in the case of the model for the distribution of sample 

proportions: 

1. The sampled values must be independent of each other. 

2. The sample size, n, must be large enough. 

 Assumptions are hard—often impossible—to check. That’s why we assume them.  

 Still, we need to check whether the assumptions are reasonable by checking conditions 
that provide information about the assumptions. 

 The corresponding conditions to check before using the Normal to model the distribution 

of sample proportions are the 10% Condition and the Success/Failure Condition. 

 

1. 10% condition: If sampling has not been made with replacement, then the sample size, n, 

must be no larger than 10% of the population. 

2. Success/failure condition:  

 The sample size has to be big enough so that both       and        are greater than 10. 

So, we need a large enough sample that is not too large.  

 

A Sampling Distribution Model for a Proportion 

 A proportion is no longer just a computation from a set of data. 
o It is now a random quantity that has a distribution. 

o This distribution is called the sampling distribution model for proportions. 

 Even though we depend on sampling distribution models, we never actually get to see 
them.  

o We never actually take repeated samples from the same population and make a 

histogram. We only imagine or simulate them. 

 Still, sampling distribution models are important because 
o they act as a bridge from the real world of data to the imaginary world of the 

statistic and  

o enable us to say something about the population when all we have is data from the 

real world. 

 Provided that the sampled values are independent and the sample size is large enough, the 

sampling distribution of    is modeled by a Normal model with  

o Mean: 

o Standard deviation:  

 

What About Quantitative Data? 

 Proportions summarize categorical variables. 

 The Normal sampling distribution model looks like it will be very useful. 

 Can we do something similar with quantitative data? 

 We can indeed. Even more remarkable, not only can we use all of the same concepts, but 
almost the same model. 

 

Simulating the Sampling Distribution of a Mean 

 Like any statistic computed from a random sample, a sample mean also has a sampling 
distribution. 

 We can use simulation to get a sense as to what the sampling distribution of the sample 
mean might look like… 

ˆnp ˆnq

( )p̂ p 
( )ˆ pqSD p n
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Means – The ―Average‖ of One Die 

 Let’s start with a simulation of 10,000 tosses of a die. A histogram of the results is: 

`        

 Looking at the average of two dice after a simulation of 10,000 tosses (see above) 

 The average of three dice after a simulation of 10,000 tosses looks like (see above) 

 The average of 5 dice after a simulation of 10,000 tosses looks like (see below) 

 The average of 20 dice after a simulation of 10,000 tosses looks like (see below) 

    
 

Means – What the Simulations Show 

 As the sample size (number of dice) gets larger, each sample average is more likely to be 
closer to the population mean. 

o So, we see the shape continuing to tighten around 3.5 

 And, it probably does not shock you that the sampling distribution of a mean becomes 
Normal. 

 

The Fundamental Theorem of Statistics 

 The sampling distribution of any mean becomes Normal as the sample size grows.  
o All we need is for the observations to be independent and collected with 

randomization. 

o We don’t even care about the shape of the population distribution! 

 The Fundamental Theorem of Statistics is called the Central Limit Theorem (CLT). 

 The CLT is surprising and a bit weird: 
o Not only does the histogram of the sample means get closer and closer to the 

Normal model as the sample size grows, but this is true regardless of the shape of 

the population distribution. 

 The CLT works better (and faster) the closer the population model is to a Normal itself. It 
also works better for larger samples. 

 The Fundamental Theorem of Statistics (cont.) 

 The Central Limit Theorem (CLT) - The mean of a random sample has a sampling 
distribution whose shape can be approximated by a Normal model. The larger the sample, 

the better the approximation will be. 
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But Which Normal? 

 The CLT says that the sampling distribution of any mean or proportion is approximately 
Normal. 

 But which Normal model? 

o For proportions, the sampling distribution is centered at the population proportion. 

o For means, it’s centered at the population mean. 

 But what about the standard deviations? 

 But Which Normal? (cont.) 

 The Normal model for the sampling distribution of the mean has a standard deviation 

equal to 

 

 where σ is the population standard deviation. 

 The Normal model for the sampling distribution of the proportion has a standard 
deviation equal to 

 

 

Assumptions and Conditions 

 The CLT requires remarkably few assumptions, so there are few conditions to check: 
1. Random Sampling Condition: The data values must be sampled randomly or the 

concept of a sampling distribution makes no sense. 

2. Independence Assumption: The sample values must be mutually independent. (When 

the sample is drawn without replacement, check the 10% condition…) 

3. Large Enough Sample Condition: There is no one-size-fits-all rule. 

 

Diminishing Returns 

 The standard deviation of the sampling distribution declines only with the square root of 
the sample size. 

 While we’d always like a larger sample, the square root limits how much we can make a 

sample tell about the population. (This is an example of the Law of Diminishing 

Returns.) 

 

Standard Error 

 Both of the sampling distributions we’ve looked at are Normal. 
 

 For proportions     For means 
 

 When we don’t know p or σ, we’re stuck, right? 
o Nope. We will use sample statistics to estimate these population parameters. 

o Whenever we estimate the standard deviation of a sampling distribution, we call it 

a standard error. 

 For a sample proportion, the standard error is  

 

 For the sample mean, the standard error is 
 

Sampling Distribution Models 

 Always remember that the statistic itself is a random quantity.  
o We can’t know what our statistic will be because it comes from a random sample. 

 Fortunately, for the mean and proportion, the CLT tells us that we can model their 

sampling distribution directly with a Normal model. 
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Sampling Distribution Models (cont.) 

 There are two basic truths about sampling distributions: 
1. Sampling distributions arise because samples vary. Each random sample will have 

different cases and, so, a different value of the statistic. 

2. Although we can always simulate a sampling distribution, the Central Limit Theorem 

saves us the trouble for means and proportions. 

 The Process Going Into the Sampling Distribution Model 

 
 

 

What Can Go Wrong? 

 Don’t confuse the sampling distribution with the distribution of the sample. 
o When you take a sample, you look at the distribution of the values, usually with a 

histogram, and you may calculate summary statistics. 

o The sampling distribution is an imaginary collection of the values that a statistic 

might have taken for all random samples—the one you got and the ones you 

didn’t get. 

 What Can Go Wrong? (cont.) 

 Beware of observations that are not independent. 
o The CLT depends crucially on the assumption of independence. 

o You can’t check this with your data—you have to think about how the data were 

gathered. 

 Watch out for small samples from skewed populations. 
o The more skewed the distribution, the larger the sample size we need for the CLT 

to work. 

 


