Chapter 15 Summary Probability Rules!

What have we learned?

- The probability rules from Chapter 14 only work in special cases-when events are disjoint or independent.
- We now know the General Addition Rule and General Multiplication Rule.
- We also know about conditional probabilities and that reversing the conditioning can give surprising results.
- Venn diagrams, tables, and tree diagrams help organize our thinking about probabilities.
- We now know more about independence-a sound understanding of independence will be important throughout the rest of this course.

Recall That...

- For any random phenomenon, each trial generates an outcome.
- An event is any set or collection of outcomes.
- The collection of all possible outcomes is called the sample space, denoted \mathbf{S}.

Events

- When outcomes are equally likely, probabilities for events are easy to find just by counting.
- When the k possible outcomes are equally likely, each has a probability of $1 / k$.
- For any event \mathbf{A} that is made up of equally likely outcomes, $P(\mathbf{A})=\frac{\text { count of outcomes in } \mathbf{A}}{\text { count of all possible outcomes }}$

The First Three Rules for Working with Probability Rules

- Make a picture, Make a picture, Make a picture.

Picturing Probabilities

- The most common kind of picture to make is called a Venn diagram.
- We will see Venn diagrams in practice shortly...

The General Addition Rule

- When two events \mathbf{A} and \mathbf{B} are disjoint, we can use the addition rule for disjoint events from Chapter 14: $P(\mathbf{A}$ or $\mathbf{B})=P(\mathbf{A})+P(\mathbf{B})$
- However, when our events are not disjoint, this earlier addition rule will double count the probability of both \mathbf{A} and \mathbf{B} occurring. Thus, we need the General Addition Rule.
- General Addition Rule: For any two events \mathbf{A} and \mathbf{B},

$$
P(\mathbf{A} \text { or } \mathbf{B})=P(\mathbf{A})+P(\mathbf{B})-P(\mathbf{A} \text { and } \mathbf{B})
$$

It Depends...

- Back in Chapter 3, we looked at contingency tables and talked about conditional distributions.
- When we want the probability of an event from a conditional distribution, we write $P(\mathbf{B} \mid \mathbf{A})$ and pronounce it "the probability of \mathbf{B} given \mathbf{A}."
- A probability that takes into account a given condition is called a conditional probability.

It Depends... (cont.)

- To find the probability of the event \mathbf{B} given the event \mathbf{A}, we restrict our attention to the outcomes in \mathbf{A}. We then find the fraction of those outcomes \mathbf{B} that also occurred.

$$
P(\mathbf{B} \mid \mathbf{A})=\frac{P(\mathrm{~A} \text { and } \mathrm{B})}{P(\mathbf{A})}
$$

- Note: $P(\mathbf{A})$ cannot equal 0 , since we know that \mathbf{A} has occurred.

The General Multiplication Rule

- When two events \mathbf{A} and \mathbf{B} are independent, we can use the multiplication rule for independent events from Chapter 14: $P(\mathbf{A}$ and $\mathbf{B})=P(\mathbf{A}) \times P(\mathbf{B})$
- However, when our events are not independent, this earlier multiplication rule does not work. Thus, we need the General Multiplication Rule.
- We encountered the general multiplication rule in the form of conditional probability.
- Rearranging the equation in the definition for conditional probability, we get the General Multiplication Rule: For any two events \mathbf{A} and \mathbf{B},

$$
\begin{aligned}
& P(\mathbf{A} \text { and } \mathbf{B})=P(\mathbf{A}) \times P(\mathbf{B} \mid \mathbf{A}) \\
& \text { or } \\
& P(\mathbf{A} \text { and } \mathbf{B})=P(\mathbf{B}) \times P(\mathbf{A} \mid \mathbf{B})
\end{aligned}
$$

Independence

- Independence of two events means that the outcome of one event does not influence the probability of the other.
- With our new notation for conditional probabilities, we can now formalize this definition:
- Events \mathbf{A} and \mathbf{B} are independent whenever $P(\mathbf{B} \mid \mathbf{A})=P(\mathbf{B})$. (Equivalently, events \mathbf{A} and \mathbf{B} are independent whenever $P(\mathbf{A} \mid \mathbf{B})=P(\mathbf{A})$.)

Independent \neq Disjoint

- Disjoint events cannot be independent! Well, why not?
- Since we know that disjoint events have no outcomes in common, knowing that one occurred means the other didn't.
- Thus, the probability of the second occurring changed based on our knowledge that the first occurred.
- It follows, then, that the two events are not independent.
- A common error is to treat disjoint events as if they were independent, and apply the Multiplication Rule for independent events-don't make that mistake.

Depending on Independence

- It's much easier to think about independent events than to deal with conditional probabilities.
- It seems that most people's natural intuition for probabilities breaks down when it comes to conditional probabilities.
- Don't fall into this trap: whenever you see probabilities multiplied together, stop and ask whether you think they are really independent.

Drawing Without Replacement

- Sampling without replacement means that once one individual is drawn it doesn't go back into the pool.
- We often sample without replacement, which doesn't matter too much when we are dealing with a large population.
- However, when drawing from a small population, we need to take note and adjust probabilities accordingly.
- Drawing without replacement is just another instance of working with conditional probabilities.

Tree Diagrams

- A tree diagram helps us think through conditional probabilities by showing sequences of events as paths that look like branches of a tree.
- Making a tree diagram for situations with conditional probabilities is consistent with our "make a picture" mantra.
- Figure 15.4 is a nice example of a tree diagram and shows how we multiply the probabilities of the branches together:

Reversing the Conditioning

- Reversing the conditioning of two events is rarely intuitive.
- Suppose we want to know $P(\mathbf{A} \mid \mathbf{B})$, but we know only $P(\mathbf{A}), P(\mathbf{B})$, and $P(\mathbf{B} \mid \mathbf{A})$.
- We also know $P(\mathbf{A}$ and $\mathbf{B})$, since $P(\mathbf{A}$ and $\mathbf{B})=P(\mathbf{A}) \times P(\mathbf{B} \mid \mathbf{A})$
- From this information, we can find $P(\mathbf{A} \mid \mathbf{B}): P(\mathrm{~A} \mid \mathrm{B})=\frac{P(\mathrm{~A} \text { and } \mathrm{B})}{P(\mathrm{~B})}$
- When we reverse the probability from the conditional probability that you're originally given, you are actually using Bayes's Rule.

What Can Go Wrong?

- Don't use a simple probability rule where a general rule is appropriate:
- Don't assume that two events are independent or disjoint without checking that they are.
- Don't find probabilities for samples drawn without replacement as if they had been drawn with replacement.
- Don't reverse conditioning naively.
- Don't confuse "disjoint" with "independent."

