1

• Mean $= \bar{x}$ (sample mean) = μ (population mean) = sum of all elements ($\sum x$) divided by number of elements (n) in a set $= \frac{\sum x}{n}$. The mean is used for quantitative data. It is a measure of center.

• Median: Also a measure of center; better fits skewed data. To calculate, sort the data points and choose the middle value.

• Variance: For each value (x) in a set of data, take the difference between it and the mean ($x - \mu$ or $x - \bar{x}$), square that difference, and repeat for each value. Divide the final result by n (number of elements) if you want the population variance (σ^2), or divide by $n - 1$ for sample variance (s^2). Thus: Population variance $= \sigma^2 = \frac{\sum(x-\mu)^2}{n}$. Sample variance $= s^2 = \frac{\sum(x-\bar{x})^2}{n-1}$.

• Standard deviation, a measure of spread, is the square root of the variance. Population standard deviation $= \sqrt{\sigma^2} = \sigma = \sqrt{\frac{\sum(x-\mu)^2}{n}}$. Sample standard deviation $= \sqrt{s^2} = s = \sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}$.

• You can convert a population standard deviation to a sample one like so: $s = \frac{\sigma}{\sqrt{n}}$.

• Dotplots, stemplots: Good for small sets of data.

• Histograms: Good for larger sets and for categorical data.

• Shape of a distribution:
 – Skewed: If a distribution is skewed-left, it has fewer values to the left, and thus appears to tail off to the left; the opposite for a skewed-right distribution. If skewed right, median $< \text{mean}$. If skewed left, median $> \text{mean}$.
 – Symmetric: The distribution appears to be symmetrical.
 – Uniform: Looks like a flat line or perfect rectangle.
 – Bell-shaped: A type of symmetry representing a normal curve. Note: No data is perfectly normal - instead, say that the distribution is approximately normal.

2

• Z-score = standard score = normal score = z = number of standard deviations past the mean; used for normal distributions. A negative z-score means that it is below the mean, whereas a positive z-score means that it is above the mean. For a population, $z = \frac{x-\mu}{\sigma}$. For a sample (i.e. when a sample size is given), $z = \frac{x-\bar{x}}{s} = \frac{x-\bar{x}}{\sqrt{n}}$.
• With a normal distribution, when we want to find the percentage of all values less than a certain value \(x \), we calculate \(x \)'s z-score \((z) \) and look it up in the Z-table. This is also the area under the normal curve to the left of \(x \). Remember to multiply by 100 to get the actual percent. For example, look up \(z = 1 \) in the table; a value of roughly \(p = 0.8413 \) should be found. Multiply by \(100 = (0.8413)(100) = 84.13\% \).

 – If we want the percentage of all values greater than \(x \), then we take the complement of that = \(1 - p \).

• The area under the entire normal curve is always 1.

3

• Bivariate data: 2 variables.
 – Shape of the points (linear, etc.)
 – Strength: Closeness of fit or the correlation coefficient \((r) \). Strong, weak, or none.
 – Whether the association is positive/negative, respectively.

• It probably isn’t worth spending the time finding \(r \) by hand.

• Least-Squares Regression Line (LSRL): \(\hat{y} = a + bX \). (hat is important)

• \(r^2 = \) The percent of variation in \(y \)-values that can be explained by the LSRL, or how well the line fits the data.

• Residual = observed – predicted. This is basically how far away (positive or negative) the observed value \((y) \) for a certain \(x \) is from the point on the LSRL for that \(x \).

• **ALWAYS** read what they put on the axes so you don’t get confused.

• If you see a pattern (non-random) in the residual points (think residual scatterplot), then it’s safe to say that the LSRL doesn’t fit the data.

• Outliers lie outside the overall pattern. **Influential points**, which significantly change the LSRL (slope and intercept), are outliers that deviate from the rest of the points in the \(x \) direction (as in, the \(x \)-value is an outlier).

4

• Exponential regression: \(\hat{y} = ab^x \). (anything raised to \(x \) is exponential)

• Power regression: \(\hat{y} = ax^b \).

• **We cannot** extrapolate (predict outside of the scatterplot's range) with these.

• Correlation **DOES NOT** imply causation. Just because San Franciscans tend to be liberal doesn’t mean that living in San Francisco **causes** one to become a liberal.
• Lurking variables either show a **common response** or **confound**.

• **Cause:** x causes y, no lurking variables.

• **Common response:** The lurking variable affects both the explanatory (x) and response (y) variables. For example: When we want to find whether more hours of sleep explains higher GPAs, we must recognize that a student’s courseload can affect his/her hours of sleep and GPA.

• **Confounding:** The lurking variable affects **only** the response (y).

5

• **Studies:** They’re all studies, but observational ones don’t impose a treatment whereas experiments do and thus we cannot do anything more than conclude a correlation or tendency (as in, NO CAUSATION)

• **Observational studies do not impose a treatment.**

• **Experimental studies do impose a treatment.**

• **Some forms of bias:**
 – Voluntary response: i.e. Letting volunteers call in.
 – Undercoverage: Not reaching all types of people because, for example, they don’t have a telephone number for a survey.
 – Non-response: Questionnaires which allow for people to not respond.
 – Convenience sampling: Choosing a sample that is easy but likely non-random and thus biased.

• **Simple Random Sample (SRS):** A certain number of people are chosen from a population so that each person has an **equal** chance of being selected.

• **Stratified Random Sampling:** Break the population into strata (groups), then do a SRS on these strata. **DO NOT** confuse with a pure SRS, which does **NOT** break anything up.

• **Cluster Sampling:** Break the population up into clusters, then randomly select n clusters and poll all people in those clusters.

• In experiments, we **must** have:
 – Control/placebo (fake drug) group
 – Randomization of sample
 – Ability to replicate the experiment in similar conditions

• **Double blind:** Neither subject nor administrator of treatment knows which one is a placebo and which is the real drug being tested.

• **Matched pairs:** Refers to having each person do both treatments. Randomly select which half of the group does the treatments in a certain order. Have the other half do the treatments in the other order.
• Block design: Eliminate confounding due to race, gender, and other lurking variables by breaking the experimental group into groups (blocks) based on these categories, and compare only within each sub-group.

• Use a random number table or on your calculator: RandInt(lower bound #, upper bound #, how #’s to generate)

6

• Probabilities are ≥ 0 and ≤ 1.
• Complement $= 1 - P(A)$ and is written $P(A^c)$.
• Disjoint (aka mutually exclusive) probabilities have no common outcomes.
• Independent probabilities don’t affect each other.
• $P(A \text{ and } B) = P(A) \times P(B)$
• $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
• $P(B \text{ given } A) = \frac{P(A \text{ and } B)}{P(A)}$.
• $P(B \text{ given } A) = P(B)$ means independence.

7

• Discrete random variable: Defined probabilities for certain values of x. Sum of probabilities should equal 1. Usually shown in a probability distribution table.
• Continuous random variable: Involves a density curve (area under it is 1), and you define intervals for certain probabilities and/or z-scores.
• Expected value = sum of the probability of each possible outcome times the outcome value (or payoff) $= P(x_1) \times x_1 + P(x_2) \times x_2 + \ldots + P(x_n) \times x_n$.
• Variance $= \sum [(X_i - \mu)^2 \times P(x_i)]$ for all values of x
• Standard deviation $= \sqrt{\text{variance}} = \sqrt{\sum (X_i - \mu)^2 P(x_i)}$
• Means of two different variables can add/subtract/multiply/divide. Variances, NOT standard deviations, can do the same. (Square standard deviation to get variance.)
- Binomial distribution: n is fixed, the probabilities of success and failure are constant, and each trial is independent.

- $p = \text{probability of success}$

- $q = \text{probability of failure} = 1 - p$

- Mean $= np$

- Standard deviation $= \sqrt{npq}$, which will only work if the mean (np) is ≥ 10 and $nq \geq 10$.

- Use $\text{binompdf}(n, p, x)$ for a specific probability (exactly x successes).

- Use $\text{binomcdf}(n, p, x)$ sums up all probabilities up to x successes (including it as well). To restate this, it is the probability of getting x or fewer successes out of n trials.
 - The c in binomcdf stands for cumulative.

- Geometric distributions: This distribution can answer two questions. Either a) the probability of getting first success on the nth trial, or b) the probability of getting success on $\leq n$ trials.
 - Probability of first having success on the nth trial $= p * q^{n-1}$. On the calculator: $\text{geometpdf}(p, n)$.
 - Probability of first having success on or before the nth trial $= \text{sum of the probability of having first success on the } x \text{ trial for every value from 1 to } n = p q^0 + p q^1 + \ldots + p q^{n-1} = \sum_{i=1}^{n} p q^{i-1}$. On the calculator: $\text{geometcdf}(p, n)$.
 - Mean $= \frac{1}{p}$
 - Standard deviation $= \sqrt{\frac{q}{p^2}}$

- A statistic describes a sample. (s, s)

- A parameter describes a population. (p, p)

- \hat{p} is a sample proportion whereas P is a parameter proportion.

- Some conditions:
 - Population size $\geq 10 *$ sample size
 - np and nq must both be ≥ 10

- Variability $= \text{spread of data}$

- Bias $= \text{accuracy (closeness to true value)}$

- $\hat{p} = \text{success/size of sample}$

- Mean $= \hat{p} = p$

- Standard deviation: $\sqrt{\frac{pq}{n}}$
• H_0 is the null hypothesis
• H_a or H_1 is the alternative hypothesis.
• Confidence intervals follow the formula: estimator \pm margin of error.
• To calculate a Z-interval: $\hat{x} \pm z^* \frac{\sigma}{\sqrt{n}}$
• The p value represents the chance that we should observe a value as extreme as what our sample gives us (i.e. how ordinary it is to see that value, so that it isn't simply attributed to randomness).
• If p-value is less than the alpha level (usually 0.05, but watch for what they specify), then the statistic is statistically significant, and thus we reject the null hypothesis.
• Type I error (α): We reject the null hypothesis when it’s actually true.
• Type II error (β): We fail to reject (and thus accept) the null hypothesis when it is actually false.
• Power of the test $= 1 - \beta$, or our ability to reject the null hypothesis when it is false.

11

• T-distributions: These are very similar to Z-distributions and are typically used with small sample sizes or when the population standard deviation isn't known.
• To calculate a T-interval.
• Degrees of freedom (df) = sample size - 1 = $n - 1$
• To perform a hypothesis test with a T-distribution:
 – Calculate your test statistic: $t = \frac{\text{statistic} - \text{parameter}}{\text{standard deviation of statistic}}$
 – Either use the T-table provided (unless given, use a probability of .05 aka confidence level of 95%) or use the T-test on your calculator to get a t^* (critical t) value to compare against your t value.
 – If your t value is larger than t^*, then reject the null hypothesis.
 – You may also find the closest probability that fits your df and t value; if it is below 0.05 (or whatever), reject the null hypothesis.
• Be sure to check for normality first; some guidelines:
 – If $n < 15$, the sample must be normal with no outliers.
 – If $n > 15$ and $n < 40$, it must be normal with no outliers unless there is a strong skewness.
 – If $n > 40$, it’s okay.
• Two-sample T-test:

\[t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]

- Use the smaller \(n \) out of the two sample sizes when calculating the df.
- Null hypothesis can be any of the following:
 * \(H_0: \mu_1 = \mu_2 \)
 * \(H_0: \mu_1 - \mu_2 = 0 \)
 * \(H_0: \mu_2 - \mu_1 = 0 \)
- Use 2-SampTTest on your calculator.

For two-sample T-test confidence intervals:

- \(\mu_1 \mu_2 \) is estimated by \((\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\)
- Use 2-SampTInt on your calculator.

- Remember ZAP TAX (Z for Probability, T for Samples (\(\bar{X}\))).
- Confidence interval for two proportions:

\[(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}} \]
- Use 2-PropZInt on your calculator.

- Hypothesis test for two proportions:

\[z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}\hat{q}}{n_1} + \frac{\hat{p}\hat{q}}{n_2}}} \]
- Use 2-PropZTest on your calculator.

- Remember: Proportion is for categorical variables.

Chi-square (\(\chi^2\)):

- Used for counted data.
- Used when we want to test the independence, homogeneity, and “goodness of fit” to a distribution.
- The formula is: \[\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}} \]
- Degrees of freedom = \((r - 1)(c - 1)\), where \(r = \# \text{ rows and } c = \# \text{ columns.} \)
- To calculate the expected value for a cell from an observed table: \(\frac{\text{row total})(\text{column total)}}{\text{table total}} \)
- Large \(\chi^2 \) values are evidence against the null hypothesis, which states that the percentages of observed and expected match (as in, any differences are attributed to chance).
- On your calculator: For independence/homogeneity, put the 2-way table in matrix A and perform a χ^2-Test. The expected values will go into whatever matrix they are specified to go in.

14

• Regression inference is the same thing as what we did earlier, just with us looking at the a and b in $\hat{y} = a + bx$.